
Acta Cryst. (1974). A30, 261 

Variances and Covariances of Coordinates in Polar Crystal Systems* 
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Relationships between positional variances and covariances that refer to different choices of origin are 
presented, and the situation is considered in which the uncertainties in the positioning of atoms are 
direction-independent and the only covariance terms are those that arise from polar aspects and non- 
orthogonality of the coordinate axes and from symmetry. Covariance terms can often be made small by 
placing the origin at a suitable centroid. 
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In polar  space groups the origin of at least one co- 
ordinate axis cannot  be related to the positions of  sym- 
metry elements, t and since by diffraction methods only 
the differences of the coordinates of  the various atoms 
can be determined, the origin of  such an axis must  be 
related to the coordinates themselves. Coordinates 
relative to such an origin are not l inearly independent.  
There must  therefore exist relationships among the 
variances and covariances of coordinates along polar  
axes, and the covariances between such coordinates 
cannot  all be zero.:~ Moreover, such variances and co- 
variances will depend on the way in which the origin 
is defined (Templeton, 1960). However, this situation 
is inherent  to the method used to determine the co- 
ordinates, which in principle can be referred to any 
independent  origin. We shall assume below that, by 
suitable measurements  or on theoretical grounds, the 
variances and covariances between atomic coordinates 
relative to an independent  origin are known, and shall 
examine the effect upon them of  relating the origin to 
the coordinates. In particular,  we shall examine the 

* Contribution No. 4731. 
t There is ambiguity regarding the concepts of polar and 

non-polar space and point groups. With the definition just 
given and here adopted, polar point groups are also those in 
which a piezoelectric effect may be achieved by hydrostatic 
pressure alone (see e.g., International Tables for X-ray Crys- 
tallography, 1952). On the other hand, a broader physical 
definition of a polar direction requires only that the direction 
and its opposite are not related by symmetry. For example, in 
point group 32 the directions of the twofold axes are polar in 
the broader sense, as are all other directions, except that of the 
threefold axis. Indeed, piezoelectric polarization in 32 may be 
achieved by torsion or anisotropic compression. Nevertheless, 
32 is a non-polar point gl oup in the sense used here, because 
there is no direction in which the origin cannot be related to 
symmetry elements, and mere hydrostatic pressure cannot 
produce a piezoelectric effect. 

:1: For non-polar coordinate axes the locations of the symme- 
try elements, to which the origin may be tied, are in the end 
also defined in terms of atomic positions. In this case it is the 
variances and covariances of symmetry-linked coordinates that 
are by necessity related, because the symmetry relationships 
among the coordinates are unavoidably used in the diffraction 
method. The covariances between coordinates of unrelated 
atoms may, however, all be zero. 

case in which interatomic covariances referred to inde- 
pendent  origin are all zero. The results will be ex- 
tended to covariances between the coordinates of  the 
same a tom along different (and generally) inclined 
axes, assuming the atomic variance-covariance tensor 
to be isotropic. Covariances between coordinates of  
symmetry-related atoms will also be considered. In 
order to gauge the accuracy of atomic positions in- 
tuitively, covariance terms should be as small as pos- 
sible, and we shall see that for this purpose a suitable 
centroid should be selected as origin. 

Covariances for a polar coordinate axis 

Let then the variances and covariances of the coordi- 
nates ~J of  the atoms j ( j =  1 , 2 , . . . , N )  along a polar  
coordinate axis, relative to an independent  origin, be 
known and consider two alternative ways of  fixing the 
origin relative to the ~J: (1) the origin is placed at one 
of the atoms, arranged to be atom N; and (2) the 
origin is chosen at a centroid, defined as a weighted 
average of the ~J. In the first case 

xJ=~J-C (1) 

is the coordinate of  a t o m j  relative to an origin at a tom 
N, and we have (see, e.g., Sands, 1966) f o r j ¢ N ,  k ¢ N ,  
j # k  

[~2(xJ):(~2(~J)"~2(~N)--2 COV (~j,~N) (2) 

cov (xJ, x~) =cov (~j,~k)+cr2(C)_cov (~J,C) 
- cov  (~k,C) (3) 

a~(xN) =coy (x~,x~)=O. (4) 

For the second choice of origin we introduce suitable 
normalized weights p j, ~ p j  = 1, in terms of  which the 
centroid coordinate is 

~ = Z p A  J. (5) 

Let the coordinates relative to ~ be designated by X J, 

X J = ~  J -  ~ p,~". (6] 
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This transformation leads to the relationship 

coy (xJ, x 9  =coy ( ~ , ~ ) -  ~ p. cov (~J, ~") 
n 

- - ~ p m C O V ( ~ k , ~ m ) + ~ p ,  pmCOV(~",~ ") (7) 
m n~l  

where 'diagonal'  terms represent variance terms, such 
as coy (XJ, XO---crz(xo.  As a check we note that be- 
cause of 

X =  ~ p , X " = 0  (8) 

the variances and covariances of the variables X j must 
satisfy the N equations 

p, cov(XJ,  X " ) = 0  j = l , Z , . . . , U  (9) 
11 

while no such restrictions apply to the terms coy (~J, ~"). 
Indeed the relationships (9) are satisfied identically by 
the covariances expressed by (7). Note that (2) and (3) 
are special cases of (7), for the situation that Pu--1, 
p; = 0 , j #  N, in which the relationships (9) reduce to (4). 
[Also if the same constant is added to all of the terms 
cov (~,  ~k), none of the terms cov (x J, ~ )  or cov (XJ ,X  k) 
is affected]. 

Consider now the special situation in which 

0 " 2 ( ~ 0  -~- S~ (10) 

cov (~J,~k)=0 j # k .  (11) 

Then for coordinates referred to an origin at atom N, 
and f o r j # N ,  k C N, j C k ,  

O'2(Xj)  = Sff + SN 2 ( 1 2 )  

cov (xJ, xk)=sZu . (13) 

Note that  all covariances have the same value, except 
those that  are zero because they involve atom N. For 
the second choice of origin, the terms defined by (10) 
and (L1) inserted into (7) yield 

a2(X9 ( 1 - 2 p j ) s ~ + ~  2 2 = p . s .  (14) 

cov (XJ, Xk)= - p s s 2 - p k 4  + ~ 2 2 pnS,, j # k .  (15) 

These values satisfy (9), and they reduce to (12) and (13) 
when PN = 1, pj = 0, j :/: N. 

Grouping of atoms 

To obtain a feeling for these results it is instructive to 
consider a situation in which all atoms of a given kind 
are associated with the same values of s 2 and ofpj .  Let 
each group of atoms of the same kind be referred to 
by a Greek index, 2 =  1 , 2 , . . . ,  v, there being v groups. 
The 2th group then contains N~ atoms, for all of which 
s~ is equal to s 2 and pj is equal to p~, with ~Nxpa  = 1. 
The results, some of which have been reported by 
Templeton (1960), are collected in Table 1, in which v 
refers to the last group of atoms, while 2, 12, and c~ may 
refer to any of the groups. Note that when the origin 
is chosen at atom N, all covariance terms are equal, as 
is already clear from (13). When the origin is at a cen- 
troid related to just the last group, the covariance be- 
tween a coordinate in this group and one in any of the 
other groups is zero.* Moreover, when the number N~ 
of atoms defining the origin is very large (or when there 
is only one kind of atom), o-2(X ;t) approaches s ] (in- 
cluding the case 2 = v), while all covariances approach 
zero. 

Covariances of coordinates along different directions 

Up to this point we have considered just one direction. 
What  then are the covariances between coordinates 
along different directions, one or both of which may be 
polar? Let ~rj and ~tk be the respective coordinates of 
atoms j and k relative to the crystallographic axes 
ar and at, and relative to an independent origin. First, 
let both ar and a~ be polar, so that the origin must be 
defined in both directions in terms of the coordinates, 

* This is analogous to the situation of a non-polar axis, 
where the origin is, in essence, referred to each and all groups 
of symmetry-related atoms, and all covariances between dif- 
ferent groups may be zero. 

Table 1. Groups o f  atoms with equal positional variances and weights 

Origin at. atom N 
a2(x v) 
a'(x ~) 

coy (x ~, x") 
Origin at centroid 

Centroid related to 
Centroid related last group of atoms 

to all atoms (pv= 1/Nv, p~=0, ~# v) 
"-'N 2s2 2 = v s2(Nv- 1)IN v sE(N - 1)/N oa(X x) (1 - 2pz)s ~ + 2. ,p~ ~ 2 # v s] + s~/N, 

2 2 2 2 cov (X A, X") -pxs  ~ -pus .  + ~.N=p=s= ~ = v, It = v - s2/Nv - s2]N 
2=v, lz~v } 0 
2 # v , a = v  
2 # v,/2 # v s~/N v 

v kinds of atoms One kind of atom Remarks 

2s~ z 2s 2 (1) 
2 2 

S A + S v  
s 2 [ = ½a2(x~)l s 2 [ = ½all (1, 2) 

(2) 

(1) Terms related to atom N are all zero. 
(2) cov (X '~, X") with 2=/z refers to two different atoms in the same group and not to the variance o'2(XX). 
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when diffraction methods are used. Placing the origin 
at atom N, the new coordinates are 

x ' J = ~ ' ~ - ~  '~ (16) 

in the direction a,, and similar equations apply to the 
direction at. The covariance between x "J and x tk is then 
given by an equation similar to (3), 

coy (x~J,x'~) =cov  (~ri ,~ '~)-cov (~'~, ~'~) 

- c o v  ( ~ , ~ ) + c o v  ( ~ , ~ ' ~ ) .  

When the origin is placed at a centroid defined in 
both direction in analogy to (5), we have for the new 
coordinates 

X ' J = ~ r J - ~ p , ¢  ~" (17) 
tl 

in the direction a, and a similar equation for the direc- 
tion at. The covariance between X "J and X ~ is given by 
an equation like (7), 

cov (x~s,x")=cov (~rs,~,~)_ ~, p, coy (~,s, ~,,) 
tl 

-- ~ Pm COV (~rm; ~tk) .~_ ~ PnPm COV (~rn, ~tm) . 
m n,m 

Next, let only a, be polar, so that only in this direc- 
tion is it required to relate the origin to the atomic co- 
ordinates. In effect we operate with independent co- 
ordinates ~tk in direction at, and with dependent co- 
ordinates, x 'J or X rJ defined by (16) or (17), in direction 
a,. For the covariances we obtain 

cov (X'J,~tk)=cov (~rl,~tk)--COV (~,N,~tk) (18) 

and 

cov (X"i,~ 'k) =cov  (~, j ,~k)_ ~ p,, cov (~r.,~tk). (19) 
t/ 

The valuej  = N is excluded in (18), and cov (x "~¢, ~tk) = 0; 

moreover, ~p j  cov (X"J,~ *k) =0.  When both a, and at 
J 

are non-polar, there is no need to relate the origin to 
the coordinates in these directions. 

As an example we shall consider the case in which the 
positional variance-covariance tensor is isotropic, and 
there are no covariances between coordinates of differ- 
ent atoms, relative to an independent origin. In other 
words, the variance-covariance tensor for the co- 
ordinates ~ is 

cov (~j,  ~,k) __g r, ~jksgZ (20) 

with g r t=b" ,  b ~ (see e.g., Templeton, 1959; Waser, 
1973). When both a~ and at are polar, and the origin is 
fixed at atom N, 

C O Y  ( X  r j ,  X tk)  rt 2 =g (6jks.l +s~) (21) 

for j--¢ N, k ¢ N; terms with j =  N and/or k = N are zero. 
With the origin fixed at the centroid 

Terms with r =  t a n d j = k  in (21) or (22) represent vari- 
ances. When both a~ and at are non-polar, (20) needs no 
change, and when one of these axes is polar and the 
other is not, all covariance terms associated with them 
are zero, because two such axes are always at right 
angles, so that grt =0.  

Symmetry-induced variances and covariances 

Variances and covariances arising by symmetry have 
been discussed, for example, by Sands (1966), and we 
shall restrict ourselves to modifications that arise for 
polar coordinate axes. In eight of the ten point groups 
in which this situation arises (2, mm2, 4, 4mm, 3, 3m, 
6, 6mm), there is only one polar coordinate axis, the 
principal axis of rotation. Atoms related by rotation or 
screw axes in this direction occur therefore in groups of 
N~, when Nx may be equal to the order of the principal 
axis or to an integral divisor of this order (including 
unity). In the direction at issue, all of the related atoms 
have coordinates that are equal to each other or differ 
by fixed fractions of the unit-cell edge, and the vari- 
ances and covariances between all these Nx coordinates 

• are equal to each other. That is, for an arbitrary origin 

coy (~rJ, ~rk) =gr'Oz.a2 (23) 

where r refers to the direction of the principal axis, 
while 2 and / t  refer to groups of symmetry-related at- 
oms ; j  refers to any one of the N~ atoms associated with 
group 2 and k to any one of the N. atoms associated 
with group/z. We now position the origin at a centroid, 
for the definition of which we associate all atoms in any 
given group, denoted by ~, with the same weight p.. It 
follows from (7) and (23) that 

cov (Xra, X~") = ff'~[(~a,- N~p>.)a 2 

N~,p,,a,,]' (24) - N.p.a~ + ~ 2 2 2 

Here the indices 2 and/z in cov (X "x, X"") refer to any 
atoms in the respective groups 2 and/~. In particular, 
cov (X'X,X "~) represents any of the covariances be- 
tween two different atoms in group 2 and also includes 
the variances of the atoms in that group; all of these 
quantities are equal to each other. The variances of 
atoms for which N: is 1, which are therefore not related 
to others by the rotation axis concerned because they 
lie on it, must of course be included in the sum over c~. 

The remaining point groups associated with polar 
coordinate axes are 1 and m. In the space group asso- 
ciated with the first of these, P I, there are no symmetry- 
related atoms, all three coordinate axes are polar, and 
the situation is as discussed in the preceding section. 
In space groups associated with m, atoms may either 
be related by mirror planes (unless they lie on one of 
them) or by glide planes. There are two polar coordi- 
nate axes parallel to these planes, and the equation 
analogous to (23) is 

coy (X'J,X'k) - rt 2 2 2 . - g  [(fijk--pj)sj--pks~, + ~, p,s,] (22) COV (~'J,~sk) =g'~fiz,a~. (25) 
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The indices r and s refer to the two polar coordinate 
axes, and the meanings of j ,  k, 2, and/z are as described 
for (23). For two atoms related by a mirror or a glide 
plane the equation analogous to (24) is then 

cov (xr~,xs~)  = g ' ~ [ ( ~  - 2p~)~  

N,,p,a~] (26) 

because Nx = 2, while N, and the N,'s may be either 1 
or 2. 

Relationships among atoms associated with the 
translation group do not affect our developments. Let 
us consider, in particular, space groups with centered 
lattices, and let the number of translation-related 
atoms in the unit cell be h. Then all values of the N~ are 
larger by a factor h, and those of all p~ smaller by a 
factor 1/h, relative to a situation in which the unit cell 
is primitive, because ~N,,p,,= 1. Since (24) and (26) 
contain only products of the form N~.p,,, both are in- 
variant to the value of h. 

Minimization of covariances 

An intuitive understanding of positional variances is 
facilitated by small values of covariance terms, and 
approximate computations of variances and covarian- 
ces of derived quantities based on positional uncer- 
tainties (e.g. Stanford & Waser, 1970; Waser, Marsh 
& Cordes, 1973) are simplified when positional co- 
variances can be neglected. For polar coordinate axes, 
covariances associated with different atoms are in 
general smaller, when they refer to an origin chosen at 
a centroid rather than when the origin is at a specific 
atom; and if the origin is at a specific atom, these terms 
are smaller when the atom is of high rather than low 
scattering power. 

The reduction of variances and covariances, from 
values associated with an origin at atom N to values 
appropriate to an origin at a centroid, can be performed 

by relationships analogous to (7) or to (19). For exam- 
ple, when both a, and at are polar, 

cov  (X~J,X '~) = c o v  (x~J, x~ )  - ~ p .  coy (x~J, x TM) 
n 

- ~ Pm COV (X"',X 'k) + ~, p,,p,,,(Xr",X TM) (27) 
rn ?l~m 

where any term on the right is zero when one of the in- 
dices j, k, n, or m is equal to N. A suitable first choice 
for the weights P.I is Z 2/x;'72 for X-ray diffraction, j l  Z.~--- n 

where the Z~ are atomic numbers, or analogous ex- 
pressions for neutron or other types of diffraction 
methods. The resulting reduced variances a 2 may then 
be used to redefine the weights to be proportional to 
1/a 2, a procedure that may be repeated until the weights 
have become stationary. This refinement of the weights 
presupposes that the uncertainties in the atomic posi- 
tions are at least approximately isotropic, permitting a 
reasonable averaging over different directions in the 
choice of the a~. The different sets of variance and co- 
variance terms that are based on different choices of 
origin are, of course, mathematically equivalent, and 
in computations that utilize all variance and covariance 
terms the choice of origin makes no difference. 

I wish to thank Richard E. Marsh for valuable dis- 
cussions. 
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